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in non-uniform solenoidal fields 

Symbols 

B magnetic flux density 
F magnetohydrodynamic body force density; 

F = J B  
J cathode current density; J0 same, in the 

absence of a magnetic field 
v velocity 

x, y ,  z spatial coordinates; z in the axial direction 
p electrolyte density 
co vorticity ( ~  = curl v) 

D/Dt substantial derivative (O/Ot + v. grad) 

In previous work on magnetoelectrolytic cells in 
uniform magnetic fields [ 1-3 ] preliminary findings 
have suggested that in non-uniform gradient fields 
the mass transport enhancement effect can further 
be increased. The effect was studied in more detail 
in a specially designed apparatus, shown in Fig. 1, 
where the non-uniform magnetic field was estab- 
lished via a 960 turn AWG 14 copper wire coil 
consisting of twelve layers of winding (total 
winding length: about 853 m, room temperature 
resistance about 7 f2). The major purpose of this 
study was to facilitate scale-up to larger size cells 
and the rational design of magnetoelectrolytic 
processes. The generated field, whose axial com- 
ponent variation is shown in Fig. 2, had a 
negligible strength distribution along the x, y- 
coordinates and the flux density, averaged over 
the entire axis, as well as its z-distribution was 
proportional to the exciting electric current flow. 
The electrolyte solutions were 0"05-0"58 moldm -3 
tecl~nical grade CuSO4 in a 1 "60-1 "62 mol dm-3 
H2 SO4 supporting electrolyte; electrolysis was 
carried out at an average temperature of 39-40 ~ C 
via a standard regulated d.c. power supply, using 
an active electrode area of 700-800 cm 2 per elec- 
trode face. 
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A typical set of experimental results is shown 
in Fig. 3, where the shaded area represents the 
domain of the mass transport enhancement factors 
observed in non-uniform solenoidal fields whose 
flux density varied between 0-0 and 90 roT, 
whereas Curves A and B correspond to uniform 
magnetic fields of 4"0-785 mT. These results 
indicate that comparable relative mass transport 
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Fig. 1. Top view of the experimental set-up. A: anodes, 
C: cathodes, AB: anode bus bar, CB: cathode bus bar, 
CWI: cooling water inlet, CWO: cooling water outlet 
(overflow), MSC: mild steel casing, W: windings of the 
solenoid, PC: plastic container. 
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Fig. 2. The variation of the axial component of the 
magnetic flux density in the solenoid core. 

rates can be achieved in non-uniform fields whose 
average Strength is about one tenth of the uniform 
field strength otherwise required, under similar 
experimental conditions. 

While a rigorous theoretical explanation of the 
observed phenomena cannot yet be offered, a 
tentative and semi-quantitative analysis based on 
the vorticity equation in an MHD continuum [4, 5] 

~176 D-t p - - ~ . g r a d v  = ; \ - - - ~ ]  (1) 

allows one plausible interpretation, since the mag- 
netic Reynolds number is very low, induced 
electric currents are negligible and it follows that 
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the velocity field in the convective diffusion layer 
obeys the simplified vorticity equation 

= exCOx + ez~z  

(2) 

The existence of closed loop vortex motion around 
the electrodes in multiple-electrode cells [1, 6] 
indicates that the co z component is strong in a 
thin subsection of the convective-diffusion layer 
adjacent to the electrodes, and it appears that this 
component becomes predominant in non-uniform 
magnetic fields. The more pronounced the field 
non-uniformity, the larger the order of magnitude 
of ~oz, as ascertained via preliminary approximate 
computations; a detailed numerical analysis will 
be the subject matter of a future study. 

Practical applications of the non-uniform mag- 
netic field effect might be possible in electro- 
plating, electrowinning and electrorefining of 
aqueous metal-ion solutions via bus bars sectioned 
in a 'rectangular coil' consisting of  a few turns 
around the electrolytic cell; the solenoidal mag- 
netic field would be excited by the d.c. current 
required for electrolysis. A thorough analysis of 
ecoriomic factors will be needed to optimize gains 
resulting from smaller tank construction costs at 
a fixed current level, or higher production rates at 
a fixed tank size. 
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Fig. 3. Enhancement factors in uniform and 
non-uniform magnetic fields. The shaded 
area represents experimental data obtained 
in non-uniform fields of average flux density 
0-90 mT; A: 0.048 mol din- 3 CuSO4 / 
1.56 mol dm -3 H~SO4 ; B: 0.409 rnol dm -~ 
CUSO4/1.56 mol dm -3 HESO 4 . Uniform 
magnetic flux density in A and B: 
4-785 mT. 
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